Rims - 1759 Inter - Universal Teichmüller Theory Iv : Log - Volume Computations and Set - Theoretic Foundations

نویسندگان

  • Shinichi MOCHIZUKI
  • Shinichi Mochizuki
  • SHINICHI MOCHIZUKI
چکیده

The present paper forms the fourth and final paper in a series of papers concerning “inter-universal Teichmüller theory”. In the first three papers of the series, we introduced and studied the theory surrounding the log-theta-lattice, a highly non-commutative two-dimensional diagram of “miniature models of conventional scheme theory”, called Θ±ellNF-Hodge theaters, that were associated, in the first paper of the series, to certain data, called initial Θ-data. This data includes an elliptic curve EF over a number field F , together with a prime number l ≥ 5. Consideration of various properties of the log-theta-lattice led naturally to the establishment, in the third paper of the series, of multiradial algorithms for constructing “splitting monoids of LGP-monoids”. Here, we recall that “multiradial algorithms” are algorithms that make sense from the point of view of an “alien arithmetic holomorphic structure”, i.e., the ring/scheme structure of a Θ±ellNF-Hodge theater related to a given Θ±ellNF-Hodge theater by means of a non-ring/scheme-theoretic horizontal arrow of the log-theta-lattice. In the present paper, estimates arising from these multiradial algorithms for splitting monoids of LGP-monoids are applied to verify various diophantine results which imply, for instance, the so-called Vojta Conjecture for hyperbolic curves, the ABC Conjecture, and the Szpiro Conjecture for elliptic curves. Finally, we examine the foundational/set-theoretic issues surrounding the vertical and horizontal arrows of the log-theta-lattice by introducing and studying the basic properties of the notion of a “species”, which may be thought of as a sort of formalization, via set-theoretic formulas, of the intuitive notion of a “type of mathematical object”. These foundational issues are closely related to the central role played in the present series of papers by various results from absolute anabelian geometry, as well as to the idea of gluing together distinct models of conventional scheme theory, i.e., in a fashion that lies outside the framework of conventional scheme theory. Moreover, it is precisely these foundational issues surrounding the vertical and horizontal arrows of the log-theta-lattice that led naturally to the introduction of the term “interuniversal”.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIMS - 1774 A Panoramic Overview of Inter - universal Teichmüller Theory By Shinichi MOCHIZUKI February 2013 R ESEARCH I NSTITUTE FOR M ATHEMATICAL S CIENCES

Inter-universal Teichmüller theory may be described as a sort of arithmetic version of Teichmüller theory that concerns a certain type of canonical deformation associated to an elliptic curve over a number field and a prime number l ≥ 5. We begin our survey of interuniversal Teichmüller theory with a review of the technical difficulties that arise in applying scheme-theoretic Hodge-Arakelov the...

متن کامل

Inter-universal Teichmüller Theory Iv: Log-volume Computations and Set-theoretic Foundations

The present paper forms the fourth and final paper in a series of papers concerning “inter-universal Teichmüller theory”. In the first three papers of the series, we introduced and studied the theory surrounding the logtheta-lattice, a highly non-commutative two-dimensional diagram of “miniature models of conventional scheme theory”, called Θ±ellNF-Hodge theaters, that were associated, in the f...

متن کامل

A Panoramic Overview of Inter-universal Teichmüller Theory

Inter-universal Teichmüller theory may be described as a sort of arithmetic version of Teichmüller theory that concerns a certain type of canonical deformation associated to an elliptic curve over a number field and a prime number l ≥ 5. We begin our survey of interuniversal Teichmüller theory with a review of the technical difficulties that arise in applying scheme-theoretic Hodge-Arakelov the...

متن کامل

Rims-1821 Bogomolov’s Proof of the Geometric Version of the Szpiro Conjecture from the Point of View of Inter-universal Teichmüller Theory

The purpose of the present paper is to expose, in substantial detail, certain remarkable similarities between inter-universal Teichmüller theory and the theory surrounding Bogomolov’s proof of the geometric version of the Szpiro Conjecture. These similarities are, in some sense, consequences the fact that both theories are closely related to the hyperbolic geometry of the classical upper half-p...

متن کامل

RIMS - 1758 INTER - UNIVERSAL TEICHMÜLLER THEORY III : CANONICAL SPLITTINGS OF THE LOG - THETA - LATTICE By Shinichi MOCHIZUKI August 2012 R ESEARCH I NSTITUTE FOR M ATHEMATICAL

In the present paper, which is the third in a series of four papers, we study the theory surrounding the log-theta-lattice, a highly noncommutative two-dimensional diagram of “miniature models of conventional scheme theory”, called Θ±ellNF-Hodge theaters, that were associated, in the first paper of the series, to certain data, called initial Θ-data, that includes an elliptic curve EF over a num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012